ОБЗОРЫ

Искусственная жизнь (ИЖ, ALife) как отдельное научное направление выделилась из теории искусственного интеллекта (ИИ) в 80-х гг. прошлого века, когда состоялась первая Международная конференция ALife I (1989 г., Лос-Аламос). Вскоре за ней последовали Европейская конференция по искусственной жизни и Международная конференция по моделированию адаптивного поведения (обе -1991 г., Париж).

Тематика первых мероприятий затрагивала темы, как теперь выражаются, "мягкой" (soft) ИЖ - создание вычислительных систем и моделей, действующих на базе биологических и эволюционных принципов. В последние же годы, во многом в связи с развитием нанотехнологических дисциплин и молекулярной биологии, а также благодаря возросшему пониманию назначения отдельных генов и способов их взаимодействия и появлению средств манипуляции отдельными молекулами, существенное внимание стало уделяться новой концепции "влажной" (dаmp) ИЖ - созданию новых, искусственно синтезированных биологических форм, что требует философского обоснования ИЖ и как минимум определения понятия "жизнь" (что же вообще понимать под этим словом). В соответствии со спецификой нашего издания мы рассмотрим "мягкую" форму ИЖ.

Одной из главных задач ИЖ считается создание искусственных существ, способных действовать не менее эффективно, нежели живые организмы*1. Только способы достижения этой цели существенно отличаются от общепринятых в практике ИИ, где задействованы самые разные инженерные технологии и математические концепции (выбираемые фактически бессистемно), характеризующиеся тем не менее достаточно четкими и прозрачными причинно-следственными связями между исходными данными экспериментов и результирующим поведением моделируемых объектов. Так, чаще всего действия роботов основываются на системах логического вывода, выполняющих известные манипуляции с наборами фактов и правил. Нейронные сети, результат работы которых менее предсказуем, находятся на стыке ИИ и ИЖ и активно задействованы представителями каждого из этих направлений, а вот такая технология, как генетические алгоритмы, сегодня по праву считается полноценной вотчиной ИЖ. Общепринятые же традиционные подходы, базирующиеся на компьютерной архитектуре фон Неймана и вычислительной концепции Тьюринга (хранимые в памяти и не модифицируемые программы, выполняемые последовательно), в ИЖ особой популярностью не пользуются.

_____

*1 С первых дней своего официального существования участники ИЖ-проектов в существенной степени (гораздо активнее, нежели классические исследователи ИИ) ориентировались на робототехнику. Однако со временем их интерес переместился к моделям коллективного поведения.

Пожалуй, главное отличие ИЖ от других сфер ИИ заключается в стремлении не просто добиться поведенческого сходства искусственных существ с биологическими, а достичь этого с помощью естественных, природных, эволюционных подходов. Тем самым не только достигается прагматический результат, но и появляется шанс познавать базовые принципы функционирования и развития живых существ "изнутри". На такой основе и намечается переход от "мягкой" сферы исследований к "влажной" - искусственному созданию биологической жизни эволюционным путем "снизу вверх". Поэтому закрытые решения, пусть и позволяющие добиться высокой эффективности действий робота или моделируемого объекта, в классических проектах ИЖ обычно не применяются и не представляют ценности, если не содержат информацию, помогающую познать реальный мир через познание самой модели.

Хотя, конечно, далеко не все исследователи, занимающиеся проблемами сферы ИЖ, стремятся к глубокому познанию реальности. Многих интересуют конкретные прикладные результаты, и хорошее соответствие действий искусственных и естественных существ уже само по себе может служить научным инструментом (за счет предсказания поведения). Поэтому значительная область ИЖ охватывает вопросы построения систем эволюционного, самоорганизующегося, масштабируемого, адаптивного поведения, основанных на биологических принципах. Ведь немалое число практических проблем невозможно решить точными математическими методами по самым разным причинам (неполнота исходных сведений, большое число конкурентов и противников, высокие размерность задачи и динамика действий в среде). Поэтому нередко проще смоделировать процесс развития некоторой ситуации, нежели пытаться сразу вычислить точный ответ.

Шахматы, например, характеризуются простыми правилами и ограниченными возможностями для маневра, но все сильные компьютерные программы просто моделируют развитие позиции на несколько ходов вперед и оценивают уже готовые расстановки фигур. Определить же последствия тех или иных действий математически, не перебирая варианты, пока никому не удается даже в такой внешне прозрачной и полностью формализованной игре.

Генетические алгоритмы - фундамент ИЖ

По этим причинам существенное внимание в ИЖ уделяется упомянутым генетическим алгоритмам (ГА), неплохо имитирующим эволюционные механизмы. Родоначальником ГА считается Джон Холланд, выпустивший в 1975 г. книгу "Адаптация в природных и искусственных системах"*1.

_____

*1 Теме ГА посвящен, например, русскоязычный сайт qai.narod.ru.

В теории ГА рассматриваются искусственные объекты (на практике это чаще всего компьютерные модели, используемые из-за простоты реализации), способные: а) адаптироваться к меняющимся условиям внешней среды и конкурировать за ресурсы; б) накапливать знания об этой среде и обмениваться ими, комбинируя выработанные способности по определенным схемам (например, получая готовые навыки по наследству в виде комбинации генов родителей); в) мутировать под влиянием определенных воздействий или случайно (в генах происходят изменения).

Хромосомы (наборы генов) каждой виртуальной особи представляют собой определенный вариант решения поставленной задачи. Каждая хромосома может быть оценена некоторой функцией, с помощью которой вырабатывается степень соответствия варианта решения нуждам заказчика. Так, если решается задача многокритериальной оптимизации, то каждый ген хромосомы соответствует значению определенного критерия, и по набору этих значений выдается результат целевой функции*1.

_____

*1 По этой причине эффективность генетических моделей сильно зависит от алгоритмов оценки хромосом, которые выбираются довольно субъективно.

Далее начинается процесс взаимодействия и развития объектов в среде: в процессе спаривания они порождают новых особей с другими комбинациями генов (значений критериев); более приспособленные (с большим значением функции оценки) продолжают существование, у некоторых из них хромосомы случайно меняются (мутируют - изменяется вариант решения), а менее приспособленные погибают. Такое взаимодействие продолжается сотни и тысячи поколений*1, и развившиеся в процессе эволюции особи обычно определяют весьма успешные варианты решения исходной задачи (точность найденного решения достигает в среднем 80-90% от теоретически возможного). Чаще всего ГА дают эффект в неопределенных ситуациях, где существует несколько достаточно хороших, хотя и неочевидных решений, а другие методы поиска ответов оказываются непригодны или малоэффективны. Помимо этого такие алгоритмы неплохо формируют шаблоны успешного поведения, так как хромосомы выживших в процессе эволюции созданий хранят, по сути, коллективный опыт многих поколений.

_____

*1 Процесс такой эволюции красив сам по себе, если суметь представить виртуальный мир в графическом виде, а хромосомы отдельных существ использовать как элементы различных цветов. Мир развивается естественным путем, а его создатель ожидает результата за чашкой чая, наслаждаясь причудливой эволюционной игрой.

Ну и, конечно, ГА не гарантируют ответ, а предложенный вариант сильно зависит от мастерства постановщика задачи (насколько корректно ему удалось закодировать форму решения в терминах ГА, описать ее в виде виртуальных хромосом). А если функция оценки не учитывает, скажем, степень допустимого риска, то ГА при оптимизации, например, стратегии игры на бирже в конечном итоге может просто предложить сохранить исходный капитал, ничего не делая и ничем не рискуя. Поэтому растет востребованность средств динамического контроля за ходом эволюции и эффективной передачи важных знаний, пока практически не проработанных.

Кроме того, генетические алгоритмы обычно требуют немалых ресурсов, поэтому предпринимаются попытки переноса ГА в распределенную вычислительную среду, благо генетические модели это позволяют.

Хороши же ГА прежде всего тем, что их можно быстро применить к произвольной предметной области и даже при наличии ограниченных вычислительных и интеллектуальных ресурсов получить хорошие результаты, недостижимые другими способами.

Так, в январе 2005 г. программист Джейк Мойланен разработал библиотеку (kerneltrap.org/node/4493/) настройки ядра Linux 2.6.9, оптимизирующую деятельность планировщиков ввода-вывода и загрузки процессора и позволяющую достичь максимально возможной производительности ОС. Для этого он использовал ГА, с помощью которых планировщики совершенствуют сами себя. А ученые Университетского колледжа Лондона в 2004 г. успешно применяли генетические алгоритмы для совершенствования гоночных машин "Формулы 1". Хромосомы компьютерных моделей автомобилей насчитывали 68 генов, и модели, развиваясь в процессе искусственной эволюции, скрещиваясь и мутируя, постоянно проходили испытания на двух виртуальных маршрутах, пока лучшая "особь" не побила рекорды трасс. ГА также оказались полезны при выработке стратегий ведения гонок и проектирования отдельных компонентов машин.

Другие технологии ИЖ

Большое внимание в ИЖ уделяется клеточным автоматам (общеизвестна игра "Жизнь" Джона Конвея, профессора Принстонского университета, и ее многочисленные модификации*1, с помощью которых удается, используя набор небольшого числа простых правил, моделировать крайне сложное и разнообразное поведение. Автоматы составляются дискретными комбинациями нескольких клеток (чаще всего на плоскости, хотя существуют и многомерные варианты; каждая клетка может находиться в нескольких состояниях). Взаимодействие (размножение и гибель) соседних клеток задается определенными законами, обычно в зависимости от ближайшего окружения, после чего клеточные конфигурации начинают развиваться, а каждое поколение формируется на основе предыдущей комбинации. Применяются клеточные автоматы при исследовании процессов движения жидкостей и газов, состоящих из простейших однородных частиц, в системах распознавания образов, в самых разных задачах моделирования.

_____

*1 См., например, www.math.com/students/wonders/life/life.html.

Конечно, и нейронные сети, в определенной степени, видимо, соответствующие принципам работы мозга, пользуются у исследователей ИЖ заслуженной и неизменной популярностью, причем интересны не только результаты их работы, но и принципы внутреннего развития таких сетей.

Занимаясь исследованиями генетических алгоритмов, клеточных автоматов, автономных агентов, эволюционных механизмов развития, ученые рассчитывают лучше понять принципы мышления и реагирования человека и животных. Возможно, появится детальное понимание процесса развития одноклеточных организмов в многоклеточные, способа организации нейронов в сложные структуры мозга, а главное, есть вероятность того, что удастся создать устойчиво работающие распределенные самоорганизующиеся системы. Не исключено, что важные результаты в этой области принесет закрытый проект Autonomous Cognitive Model (ACM) фирмы Artificial Development (ad.com). Летом 2004 г. она приступила к работам по созданию искусственной личности Kjell, в ходе которых будет смоделирована деятельность подкорки и ряда периферийных систем человеческого мозга (в первую очередь областей, ответственных за анализ и понимание изображения и звука). Пока Kjell обучается текстовому общению через консоль с помощью классических методов стимул - реакция. В будущем подготовленные ACM-системы смогут применяться в задачах анализа данных, интеллектуального поиска информации, обработки естественных языков.

В проекте задействован ориентированный на нейронное моделирование Linux-кластер CCortex, составленный из 1000 процессоров, ОЗУ объемом 1 Тб и жесткого диска емкостью 200 Тб. Kjell насчитывает 20 млрд. нейронов, между которыми установлено 20 трлн. связей - такая сеть в 10 тыс. раз крупнее существующих нейронных моделей.

В последние годы на международных конференциях все чаще обсуждаются вопросы конструирования масштабных адаптивных решений, а на системах интеллектуальных агентов успешно отрабатываются социальные концепции и методы управления большими группами людей. Австралийские ученые выяснили, например, что социальное взаимодействие в современном мире хорошо описывается моделями поведения насекомых, выполняющих несложный набор определенных функций и стремящихся к удовлетворению известных потребностей. А их коллеги из английского Университета Лидс, исследуя принципы имитационного обучения ("делай как я"), установили, что внешнее подражание поведению "лидера" далеко не всегда дает эффект, если не учитываются индивидуальные особенности конкретного существа и влияние его окружения. Гораздо более результативны принципы так называемого социального обучения, когда каждый ученик рассматривается с учетом всех его связей с окружающим миром.

На базе большого числа успешных практических решений и проектов ИЖ выработано понимание и ограничений классических положений эволюционной теории, концепция генотипа и фенотипа (статичности и изменчивости) в которой урезана уровнем биологических систем. Однако эволюция не сводится только к генетическим манипуляциям и мутациям отдельных индивидуумов и вершится, как предполагается, на более глобальных уровнях. Надо понимать и учитывать связь и различие эволюции как физических тел, так и психической, нервной, а также коллективной деятельности. Возможно, что такие феномены, как эффект Болдуина*1, будут с помощью достижений ИЖ со временем обобщены и распространены на социальное поведение.

_____

*1 Эффект, описанный американским биологом Джеймсом Болдуином в статье "Новый фактор эволюции" в 1896 г. и заключающийся в том, что искусственный навык, полностью выработанный в ходе эволюции, в дальнейшем закрепляется на генетическом уровне и начинает передаваться по наследству.

Другое дело, что сама по себе эволюция вряд ли имеет определенную цель (так как никем и ничем не управляется и представляет скорее универсальный процесс и закон развития) и не ведет напрямую к усилению конкуренции или избирательности отдельных особей и видов: повышение выживаемости живых существ - лишь побочный эффект единого глобального процесса развития, принципы которого и пытаются познать специалисты по ИЖ. Поэтому если в ходе теоретических обсуждений и практических экспериментов удастся выработать серьезный философский фундамент*1 эволюционной идеи, то выводы и следствия из него будут очень занимательными.

_____

*1 На недавно прошедшей 15-й австралийской конференции по искусственному интеллекту обсуждался вопрос построения кибернетического футболиста-философа, рассуждающего перед каждым своим действием. Оказалось, что для эффективной игры ему достаточно руководствоваться тремя простыми правилами: следить за мячом; определять варианты своих дальнейших действий; оценивать, какой вариант лучше всего поможет команде, и выполнять его.

Ведь ученые давно пытаются понять, как сложные системы развивают сами себя, переходя на более высокий функциональный уровень*1. Интересно, что путь к более развитому состоянию чаще всего начинается не из режима повышенной стабильности, а с границы между порядком и хаосом*2. Возможно, в понимании подобных процессов и кроется тайна эволюции, которая не обязательно совершается плавно, постепенно. Так, хотя Дарвин и выдвигал тезисы в защиту эволюционного появления в ходе естественного отбора таких сложных органов, как глаз, но все же признавал, что их постепенная эволюция маловероятна, потому что организмы с недоразвитыми "промежуточными" глазами, своеобразной обузой, быстро бы погибали*3. Впрочем, далее будет показано, как даже несложные правила коллективного развития могут приводить к феноменальному возникновению новых упорядоченных сущностей более высоких и сложных смысловых порядков, причем фактически "революционным", резким путем, за считанные поколения.

_____

*1 По этой теме можно порекомендовать книгу "Феномен науки" (доступна в электронном виде на сайте www.refal.net) известного ученого Валентина Турчина, создателя языка метапрограммирования и метакомпиляции РЕФАЛ. Кстати, заложенные в РЕФАЛ еще в 60-70-е гг. прошлого века системные идеи опережают время и по сей день!

*2 Теория хаоса, изучающая принципы возникновения упорядоченных систем из беспорядка, очень тесно пересекается с ИЖ; подробности см. на сайте www.xaoc.ru.

*3 Что не исключает возможности плавного зарождения простейших "глаз", которые сначала будут реагировать лишь на наличие света, а затем, постепенно развиваясь и усложняясь, научатся распознавать интенсивность света, оттенки серого, потом 4, 16, 256 цветов :) и т.д.    

(Продолжение следует)

Версия для печати