Компания IBM представила IBM Machine Learning, первую когнитивную платформу для непрерывного создания, обучения и развертывания большого объема аналитических моделей в частном облаке, которое лежит в основе обширных корпоративных хранилищ данных. Даже используя самые современные методы, специалисты по обработке данных, которых сейчас не хватает на рынке, могут потратить дни или недели на пошаговую разработку, тестирование и модификацию всего одной аналитической модели.
IBM взяла за основу технологию машинного обучения платформы IBM Watson и прежде всего сделает ее доступной там, где размещена большая часть корпоративных данных заказчиков: на мейнфреймах z Systems, операционных ядрах глобальных организаций. С их помощью банки, предприятия розничной торговли, страховые, транспортные и государственные компании ежедневно проводят миллиарды транзакций.
IBM Machine Learning позволяет специалистам по обработке данных автоматизировать создание, обучение и развертывание операционных аналитических моделей, поддерживающих: любой язык (например, Scala, Java, Python); любой популярный фреймворк для машинного обучения (например, Apache SparkML, TensorFlow, H2O); любой тип данных по транзакциям; перемещение данных в облако без дополнительных расходов, задержек или рисков.
Cognitive Automation for Data Scientists, разработанная IBM Research, помогает специалистам по обработке информации выбирать подходящий алгоритм для анализа путем сравнения доступных алгоритмов с имеющимися данными и их ранжирования. Таким образом, система находит наилучшее соответствие для текущих потребностей. Сервис также учитывает различные обстоятельства, например, необходимый функционал алгоритма и скорость получения результатов.
Заказчики уже начали понимать ценность IBM Machine Learning for z/OS. В частности, Argus Health (группа DST) использует эту технологию, чтобы помочь плательщикам и поставщикам справляться с растущим количеством сложных задач и оптимизировать результаты их решения. Argus тестирует различные сценарии применения IBM Machine Learning for z/OS для разработки, обучения и развертывания приложений, которые позволят лучше управлять расходами аптек. С помощью этой технологии Argus надеется продолжить работу над построением уникальных решений, которые будут обеспечивать инсайтами на базе углубленной аналитики участников различных сценариев. В том числе будут учитываться такие места оказания медицинской помощи, как кабинет врача и аптека.
«Миссия Argus состоит в том, чтобы наши клиенты в рамках программы медицинского страхования добивались наилучших результатов лечения с медицинской и финансовой точки зрения. Для этого мы стремимся предоставить самый высокий уровень обслуживания по оптимальной цене и в наиболее удобном для пациентов месте. Компания также стремится стать ведущим в отрасли поставщиком фармакологических и медицинских решений, — сказал Марк Палмер, президент Argus Health. — Нас впечатлили те возможности и потенциал, которые мы увидели в рамках совместной работы IBM Machine Learning с нашей платформой по обработке претензий RxNova, медицинскими решениями и прикладной аналитикой. Такое объединение сервисов позволило создавать модели, которые постоянно совершенствуются благодаря поступающим данным, и получать результаты в режиме реального времени, что отвечает интересам пациентов, специалистов по уходу за больными и врачей».
«Машинное и глубокое обучение представляют собой новые сферы аналитики. Эти технологии станут основой автоматизации процесса получения инсайтов в масштабе критически важных систем и облачных сервисов по всему миру, — сказал Роб Томас, руководитель IBM Analytics. — IBM Machine Learning была разработана для эффективного использования ключевых технологий Watson и ускорения внедрения машинного обучения на площадках, где сконцентрирована подавляющая часть корпоративных данных. Поскольку заказчики замечают бизнес-отдачу от инвестиций в частное облако, они будут расширять применение гибридных и публичных облаков».
IBM Machine Learning станет уникальной возможностью, которая поможет бизнесу из различных отраслей справляться с задачами динамического характера.
В сфере розничной торговли система предсказания объемов продаж должна принимать во внимание современные тренды на рынке, а не только тенденции прошлого месяца. Для персонализации в режиме реального времени программа должна учитывать все, что случилось за прошедший час.
В сфере финансовых сервисов система, которая предлагает различные продукты для финансовых консультантов или брокеров, должна эффективно учитывать текущие интересы, тренды и движения рынка, а не события прошлых месяцев.
В области здравоохранения решения персонализированной медицины должны подстраиваться под каждого заказчика и конкретный случай. Медицинские и персональные фитнес-устройства, подключаемые через интернет вещей, могут быть использованы для сбора данных о поведении человека и компьютера, а также их взаимодействии.
Мейнфрейм IBM z Systems способен обрабатывать до 2,5 млрд транзакций в день — это эквивалент примерно 100 «киберпонедельников». IBM Machine Learning for z/OS помогает извлечь наибольшую ценность из данных z Systems, не перемещая при этом информацию из системы для анализа. Это также позволяет минимизировать задержки, затраты на проведение транзакций и риски безопасности, связанные с традиционными ETL-процессами. Система постоянно анализирует данные, модели для предоставления улучшенных прогнозов, инструменты оптимизации поведенческих моделей и ускорения времени получения инсайтов.
IBM Machine Learning сначала будет доступна на z/OS, а затем появится на других платформах, включая IBM POWER Systems. Развертывая IBM Machine Learning на POWER Systems, заказчики смогут более эффективно использовать машинное обучение, обеспечивая высокую производительность и рентабельность вместе с полным управлением данными.