Группа компаний «Гарда» обновила систему NDR , предназначенную для выявления и предотвращения кибератак. Теперь заказчики имеют возможность предотвращать сложно детектируемые сетевые атаки. С помощью моделей машинного обучения на основе технологии автокорреляции «Гарда NDR» выявляет аномалии в сетевом трафике и определяет обращения к центрам управления ботнетами.

Эксперты группы компаний «Гарда» добавили в перечень инструментов системы NDR модель машинного обучения для выявления обращений к центрам управления ботнетов (Command&Control Center, С&C ) с поддержкой автокорреляции.

Технология позволяет выявлять повторяющиеся последовательности из нескольких уникальных запросов ботов к их центрам управления. Система выявляет скрытые зависимости в сетевом трафике, более точно определяет аномалии, которые указывают на присутствие ботов и их активность в сети. В результате, «Гарда NDR» применима для противодействия даже сложно детектируемым сетевым угрозам.

Модель устойчива к шифрованию и поддерживает детектирование даже при использовании туннелей DNS-over-HTTPs .

«В 2021 мы выпустили первую версию поведенческих ML-моделей (моделей машинного обучения) и приняли стратегическое решение развивать несигнатурные методы выявления угроз и аномалий, которые являются ключевым элементом функциональности для NTA /NDR-решений, — отметил руководитель разработки продукта „Гарда NDR“ Павел Шубин. — С того момента ML-модели „Гарда NDR“ существенно эволюционировали, сейчас они способны выявлять даже неочевидные отклонения поведения устройств и пользователей, которые нельзя определить другими методами. Поведенческие модели (профилирование) с учетом постоянно возрастающей сложности атак по-прежнему остаются наиболее действенным инструментом их детектирования».

«Сейчас мы ясно пониманием, что российский подход к NTA-решениям, основанный на сочетании IDS и DPI , устарел и не отвечает задачам рынка и актуальному ландшафту угроз. Мы постоянно совершенствуем ML-модели и выпустили новую модель для детектирования обращений к C&C, которая позволяет детектировать маскирующиеся последовательности из нескольких уникальных „отстуков“», — добавил руководитель продукта «Гарда NDR» Станислав Грибанов.